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The main objectives of the program are to study crack tip stresses and crack

tip deformation, and to use the findings of these studies to investigate the

fractures of ductile and tough materials.

Crack tip displacement and strain fields were measured with the moire method,

and the crack tip stress, displacement, and strain fields were calculated with

the finite elements method. The measured displacement and strain fields agree

well with the finite element calculations. The results were used to develop the

direct correspondence method of evaluating fracture toughness of ductile and

tough materials and were also used to analyze deformation mode of fatigue crack

growth.

Griffith(l) formulated his well known energy criterion for brittle fractures.

At the fracture initiation of a cracked brittle solid in the condition of fixed

grip, the release rate of the stored strain energy equals or exceeds the dissi-

pative surface energy rate. MU P/a au / 1a = 2y, where U Fand U Yare strain

energy and surface energy; y, the surface energy per unit area; and a, crack

length. y is constant for a given material . Assuming a constant dissipative

rate of plastic energy r, Irwin ()and Orowan ()extended the energy criterion

to metallic solids, where plastic deformation takes place at crack tips.

The crack tip elastic stresses, strains, and displacements are characterized

by the stress intensity factor, K. Ld.. has shown that for the case of small

scale yielding, SSY, K characterizes crack tip stresses, strains, and displace-

ments even within a crack tip plastic zone in a metallic specimen. Liu has em-

phasized that the capability of K to characterize crack tip stresses, strains and

displacements forms the fundamental basis of the linear elastic fracture mechanics

rather than the global energy balance.
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More recently, Hutchinson(6), and Rice and Rosengren
(7 ) derived the charac-

eristic crack tip stress, strain and displacement fields in power law strain

hardening materials. The crack tip stress, strain and displacement fields can

be characterized by J, which is a contour independent integral. J is also the

rate of potential energy change during the cracking process in a non-linear

elastic solid. J has been widely used to study non-linear fracture mechanics.

However, the characteristic crack tip fields are not universally valid. Figure I

shows the slip line fields of a double-edge-notched specimen and a center-notched

specimen under fully plastic tensile loads. Because of the difference in in-plane

constraints, the principle tensile stress equal to (2 + 1r)k in one case and 2k in

the other; k is the yield stress in terms of shear. The characteristic flow fields

and stress fields of these two cases are grossly different. In other words, for

different types of specimen geometry, the characteristic fields might be different.

The same J-value might mean different crack tip stresses, strains, and displacements.

As a result, one would expect that specimens of different geometric types would

fail at different J-values. Indeed, Hancock and Cowling (8 ) tested specimens of

five different geometries, Fig. 2. The lowest and the highest values of crack

tip opening displacements at fracture, 6cs differ by a factor of 10. 6 is re-

lated to J but the relation differs for different flow fields. Taking the dif-

ference of the flow fields into consideration Hancock and Cowling
(P) found t'.e

corresponding extreme values of Jc to be 570 kNm -I and 147 kNwt 1, a difference

of a factor of four.

Compact tension specimens and three point bending specimens were extensively

used to measure fracture toughnesses of a number of tough and ductile materials.

Yet according to the results shown in Fig. 2, the measured JIc values would be

overvalued in comparison with the deeply double-edge-cracked specimens.
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In view of the divergent results of recent findings, a sound and rational

method of fracture-toughness evaluation is badly needed. This research pro-

gram follows a much more careful process of developm-ent. The crack tip deforma-

tions were measured and calculated numerically. The measurements and the numeri-

cal calculations were compared with the analytical results. Based on these

studies, the characteristic crack tip fields were deduced. Then the direct

correspondence method of evaluating fracture toughnesses was developed.

Three characteristic two-dimensional crack models exist: plane strain,

plane stress and Dugdale model. The characteristic crack tip fields of plane

stress and Dugdale models were studied extensively in this investigation. The

crack tip stress, strain and displacement fields of a small sample in large

scale yielding or general yielding correspond directly to the crack tip fields

of a large sample in small scale yielding. Therefore these two samples, one

small and one large, must have the same K or J value. This conclusion is sub-

stantiated by the excellent agreement between the measured crack tip strain

arnd displacement fields with the finite element method calculations; the ex-

cellent agreement between the finite element calculations and the analytical

Hucisn(6) (7)
results of Hucisn and Rice and Rosengren ;and the agreement of the

measured and calculated load-elongation curves of cracked samples. The choice

of a specific model and specific mechanical parameter for fracture toughness

evaluation is heavily dependent on the specimen thickness. The details are

summarized in Appendix 1: "Thickness Effects on the Choice of Fracture Criteria".

At times, the extensive experimental and theoretical studies appear to be

overly cautious. However, in view of the recent work by Hancock and Cowling~,

our careful approach is warranted. The method of direct correspondence is ex-

troev promising for the future development of non-linear fracture mechanics.
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Fatigue cracks in ductile materials are often propagated by shear deforma-

tion process. When a crack is small and the applied stress approaches the tensile

yield stress of a material, the crack tip plastic zone size will be comparable or

even larger than the crack length. The effects of large scale yielding will cer-

tainly make the correlation between AK and da/dN invalid. Crack tip shear defor-

mation in both small scale yielding and large scale yielding were calculated.

Again the principle of direct correspondence is used to establish the equivalent

K-value of a micro-crack in large scale yielding. The results were used to analyze

fatigue crack growth.

Materials are not homogeneous. They consist of weak and soft phases and strong

and hard phases. The crack tip shear decohesion displacement in a soft phase was

calculated. The shear deformation at the crack tip in a soft phase is constrained

by the neighboring hard phase. The calculated shear deformations were used to analyze

fatigue crack growth. The analyses on micro-crack and the heterogenous two-phase

materials are summarized in Appendix II, "Crack Tip Deformation and Fatigue Crack

Growth."

The list of publications on the research results of this program is shown

in Appendix Il1.

The grant has supported three graduate students: Drs. Wan-liang Hu, C. Y.

Yang and Mr. Chien-Erh Hong. Mr. Hong has yet to complete his thesis. Their

dissertation and thesis titles and present affiliations are given in Appendix IV.
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ABSTRACT

The stresses and strains in a cracked solid are in a complicated 3-dimensional

state. There are three two-dimensional limiting cases: plane strain, plane stress,

and Dugdale's strip yielding case. The thickness of a plate relative to crack tip

plastic zone size determines which one of these three limiting cases is predomi-

nant. The characteristics of the plane stress and the Dugdale strip yielding crack

tip fields were investigated with the moire method together with the finite ele-

ment calculations. The state of the crack tip stress and strain fields approaches

that of plane strain for very thick plates. For a very thin plate with a very

large crack tip plastic zone, the Dugdale's strip yielding model is applicable,

and the crack opening displacement, crack tip opening displacement, and thickness

contraction are related to K or J and they can be used for fracture toughness

measurements. When a plate thickness is in between these two extremes, there

exists a characteristic plane stress crack tip field. The correspondence of the

plane stress crack tip fields in small scale yielding and in general yielding

was established, and the J-value of a sample in general yielding can be obtained

from the established correspondence. The value of the applied J-field of a small

sample in general yielding can be measured in terms of the applied stress and the

specimen elongation

* Keywords: Non-linear fracture mechanics, fracture toughness, small scale

yielding, general yielding, COD, CTOD, K, J, and thickness

contraction.
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exist. Still further away is Region IV, where the effects of specimen geometry and

type loading dominate the deformation characteristics. Note that, in general, not

all of these four regions are present. For example, Region III diminishes with

increasing load. For a very thick single-edge-cracked, SEN, specimen, only Region

I and Region IV may exist.

The nature of the plane strain stiffening effect in Region I has been discussed

previously[lO. It is the stresses and strains in the immediate vicinity of the

crack tip within the stiffened zone that cause fracture initiation. The crack tip

stiffened zone is embedded within the plane stress crack tip field. It is reasonable

that the stresses and strains in the stiffened zone should be characterized by the

intensity of the plane stress crack tip field. In other words, the same intensity

of the plane stress crack tip field infers the same stresses and strains in the

stiffened zone, even though the exact values of the stresses and strains in the

stiffened zone are unknown. Therefore, the intensity of the plane stress crack tip

field also characterizes the condition for crack initiation. The degree of the

crack tip strengthening is affected by plate thickness, therefore this conclusion

Is applicable only to samples of same thickness. We will focus our attention

in Regions II and III.

Crack tip stresses, strains and displacements in elastic solids can be expressed

in terms of the stress intensity factor K. In a like manner, Hutchinson[8] ana Rice

and Rosengren have shown that crack tip stresses, strairts, and displacements can

be expressed in terms of J.

1

OUj. 'e] = oaoo In r [ ICije,n), a (e,n)]

n

i aEI- e [ r' (en)cij 0oo I o n r j

n 1

'ui = o[a0o Inn+ rn+ uY l(en) (I)
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II. CHARACTERISTIC PLANE STRESS CRACK TIP FIELD - SMALL SCLE YIELDING AND LARGE
SCLAE YIELDING CORRESPONDENCE

Crack tip strains, cyy, were measured by Gavigan, Ke and Liu
[7] in double-edge-

cracked, DEN, specimens made of three batches of 2024-0 aluminum alloy. 102 mm and

203 mm (4 or 8 inches) wide specimens of three different thicknesses were tested.

The meeasurements are shown in Fig. 1. The solid lines are plane-stress finite

element calculations. Away from the crack tip, in the region r > t, the meas ire-

ments and the calculations agree very well. Close to the crack tip, r < t, the

measured strains are less than the calculated values. These strains were measured

on the specimen surface; however the surface was not free to deform, because the

surface was coupled to the interior of the specimen, where "plane strain" con-

straint existed. The constraint "stiffened" the crack tip area and it reduced

strains on the surface. The constraint is a localized three-dimensional phenomenon.

Beyond the crack tip stiffened zone, the measurements clearly indicate the existence

of a characteristic plane stress crack tip field. Figure 2 shows the measured and

the calculated load-displacement, P-A, curves. Again, the agreement of the measure-

ments and the calculations is very good.

Figure 3 schematically shows various regions of stress and strain fields.

Region I extends from the crack tip to a distance approximately equal to half of

the specimen thickness. In this region, the plane strain stiffening effect exists,

and the three dimensional effect is clearly shown. In Region II, the plane stress

condition prevails. The stress and strain fields approach the analytical results

of Hutchinson[8] and Rice and Rosengren . Region III lies further away from

the crack tip where the material deforms elastically and the stresses and strains

vary with r 0 5 . The measurements shown in Fig. 1 were all made at general yield-

ing. However if a specimen is large enough, the characteristic elastic field may

*This will be discussed in detail later.
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exist. Still further away is Region IV, where the effects of specimen geometry and

type loading dominate the deformationcharacteristics. Note that, in Meneral, not

all of these four regions are present. For example, Region III diminishes with

increasing load. For a very thick single-edge-cracked, SEN, specimen, only Region

I and Region IV may exist.

The nature of the plane strain stiffening effect in Region I has been discussed

previously 1O. It is the stresses and strains in the immediate vicinity of the

crack tip within the stiffened zone that cause fracture initiation. The crack tip

stiffened zone is embedded within the plane stress crack tip field. It is reasonable

that the stresses and strains in the stiffened zone should be characterized by the

intensity of the plane stress crack tip field. In other words, the same intensity

of the plane stress crack tip field infers the same stresses and strains in the

stiffened zone, even though the exact values of the stresses and strains in the

stiffened zone are unknown. Therefore, the intensity of the plane stress crack tip

field also characterizes the condition for crack initiation. The degree of the

crack tip strengthening is affected by plate thickness, therefore this conclusion

is applicable only to samples of same thickness. We will focus our attention

in Regions II and III.

Crack tip stresses, strains and displacements in elastic solids can be expressed

in terms of the stress intensity factor K. In a like manner, Hutchinson [8] and Rice

[9]and Rosengren have shown that crack tip stresses, strains, and displacements can

be expressed in terms of J.

1
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I. INTRODUCTION

GriffithE1 formulated the energy fracture criterion for brittle solids. At

the onset of fracture initiation, the driving force (i.e. the rate of change of

the elastic strain energy of a cracking solid), is equal to the energy dissipation

rate (i.e. the surface energy of a brittle solid), which is a constant. Irwin [2]

and Orowan []extended the Griffith energy criterion to metallic solids by assuming

the plastic energy dissipation rate for fracture initiation was a material constant.

However, it can be shown that the plastic energy dissipation rate of a cracking in-

finite plate in the condition of plane strain is linearly proportional to crack

length, 2a. So does the rate of change of the elastic strain energy of the plate.

The fracture criterion of the global energy balance leads to a constant fracture

stress for an infinite plate. The fracture stress is independent of crack length.

This conclusion contradicts the experimental evidences, therefore the criterion of

the global energy balance for fracture initiation without the consideration of the

detailed fracture processes, must be fortuitous'> 5

Liu E4'5 has shown that the stress intensity factor, K, characterizes crack

tip stresses and strains even within the crack tip plastic zone, r if the condi-

tion of small scale yielding, SSY, is satisfied. The very existence of this con-

clusion allows us to determine experimentally the minimum specimen size for valid

fracture toughness measurements. But the condition of SSY is a sufficient, not

the necessary, condition for the validity of the linear elastic fracture mechanics.

The necessary condition is that K should be able to characterize the crack tip

stress or strain responsible for the defined fracture process. When the applied

stress or strain at the fracture process zone reaches the critical value, frac-

ture will occur.

If it is limited to the realm of the linear elastic fracture mechanics, with

the restriction to the same fracture mode and the limitation to the same thickness,

the concept of the K-characterization of the crack tip field and the assumption of



the constant dissipation rate of plastic deformation energy lead to the same re-

sults. However, when it is extended beyond the realm of the LEFM, only the correct

analysis will lead to the desired results. The concept of characterizing

crack tip stress and strain fields by the stress intensity factor, K, forms a sound

basis for the extension of the LEFI4 to non-linear fracture mechanics. This paper

illustrates its applications.

The characteristic crack tip stresses and strains are greatly affected by

specimen thickness. When a small plastic zone at a crack tip is imbedded in a

massive and thick plate, the constraint to thickness contraction induces a state of

high triaxial stresses, and the state of the crack tip field approaches that of

plane strain. The maximum principle stress, Gmax is nearly 2.45 x aflow, and the

triaxial state of stresses restrains plastic deformation. On the other hand, a

very large plastic zone in a thin plate causes crack tip necking. In this instance,

extensive plastic deformation is concentrated within a thin narrow strip. Within

the strip, the plate thickness contracts considerably, and the deformation approaches

the Dugdale strip yielding model [6]. When specimen thickness is intermediate between

these two extremes, a charcteristic plane stress crack tip field exists. In this

case, the maximum principle stress is nearly equal to aflow,

Fracture processes are controlled by the crack tip stresses and strains which

are greatly affected by plate thickness. Therefore the choice of the fracture

criteria must also be dependent on plate thickness.

This paper summarizes and synthesizes the experimental and theoretical work on

the effects of thickness on crack tip stresses, on crack tip deformation, and on

the choice of the fracture criteria for non-linear fracture mechanics. Plate thick-

nesses less than that of plane strain were studied. The results are applicable to

structures made of high toughness materials which are less thar 2 inches thick.

14
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for a material with a power law stress-strain relation

C= c-)n (2)
G0 CF0

where, a0 is the flow stress at the strain co . When o ='y and o= = .
(O n ) 'O ((8n a nd u, n) a r

I. ae is effective stress. i n N and u i(No) are

functions of 6 and n. They define the distributions of their corresponding com-

ponents in the 0-direction. I n(n) is a function of n.

7T n u (n+l) + ( )]de (3)in = -+l C e

J is the well known J-integral. It characterizes crack tip stresses, strains, and

displacements analogous to K for elastic solids.

For a non-linear elastic solid, J can also be considered as the rate of the

change of the potential energy with respect to crack increment. In the case of SSY,

K2

2 L_- (4)
E

where E = E for plane stress and E = E/(l-v 2 ) for plane strain. v is the Poisson's

ratio.

However, the characteristic crack tip fields given by Eqn. (1) are not uni-

versally valid in all the cases. Figure (4) shows the slip line fields of a

double-edge-notched specimen and a single-edged-notched specimen under fully plas-

tic tensile loads. Because of the difference in in-plane constraint, the principle

tensile stress equal to (2 + r)k in one case and 2k in the other; k is the yield

stress in terms of shear. The characteristic flow fields and stress fields of

these two cases are grossly different. In other words, for different types of

specimen geometry, the characteristic fields might be different. The same
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J-value might indicate different crack tip stresses, strains, and displacements.

As a result, one would expect that specimens of different geometric types would

fail at different J-values. Indeed, Hancock and Cowling[ill] tested specimens of

five different geometries. The lowest and the highest values of crack tip open-

ing displacements at fracture, 6c differ by a factor of 10. 6 is related to J

but the relation differs for different flow fields. Taking the difference of

the flow fields into consideration Hancock and Cowling ill] found the correspond-

ing extreme values of Jc to be 570 kNm_ and 147 kNm - , a difference of a factor

of four.

In order to measure fracture toughness as a material property, a reference

state of crack tip field must be established. The most meaningful one is that of

the small scale yielding. With this choice, the measured fracture toughness of

a small sample in general yielding will be able to predict the fracture strength

of a large structure in small scale yielding.

Plane stress calculations are also made for the double-edge-cracked sample

and the single-edge-cracked sample in SSY, LSY, and GY. The characterization

of the crack tip fields, the correspondence between the crack tip fields in the

state of the SSY, LSY and GY, and their relation to the applied stress and the

imposed elongation are studied.

The crack tip stress and strain fields in samples made of two batches of alumi-

num alloy in the state of SSY were studied using plane stress finite analysis. A

circular sample with a crack along one of the radial lines and with boundary dis-

placements given by the dominant terms of the linear elastic solution, i.e. u

1/2
(K/2v)(r/2r) u1(e), serves as the reference state, see Fig. 5. v is shear

modulus. The o - e relations are prescribed by a = Ec for a <y and a = kc N
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for a >a . k = ENoy (-N) Gy = 69 MPa (10 ksi) and N = 0.22 for batch B; and

ay = 50 MPa (7.26 ksi) and N = 0.315 for batch C. The finite element mesh is

shown in Fig. 5. The details of the calculations are given in Ref. 12. The crack

line stresses and strains for batch C aluminum are shown in the dimensionless plots

in Fig. 6. The results of nine loading steps are shown. The value of KI ranges

from 1.24 to 4.4 MPavF- (1.25 to 4 ksi/Tn).

Within rp, the y-direction strain and stress can be expressed as

r m Ey r m y KI
2m m

S= E p  (- R) =- (- ) =- Y  )  _ (_ (9a)yy yy(r=r)p r 6 r 6 ea r a r'

r m' (Y m' ay m. oy KI 2m' m'

y = yy(r=r ) Rr -r ) r Y1 (yE-r I ) (9b)

)2where rp = y(KI/ Y  YJ/EyGy, The values of a, ' and y are respectively 1.41,

0.98, and 0.243 for batch C aluminum, and 1.35, 0.92, and 0.281 for batch B

aluminum.
The form of Eq. (9) is similar to that given by Hutchinson8 and Rice and

Rosengren [g ], Eq. (1). Combining Eqs. (1 and 9), with (m+m') = 1, one obtains

I n(n)/' yy(0,n)' yy(O,n) (10)

TABLE I

N n ''/y In (n)/ayy(O,n)E yy(O.n)

Batch B 0.22 4.5 1.35 0.92 0.28 4.4 4.4

Batch C 0.32 3.2 1.41 0.98 0.24 5.7 5.0

Table I lists the values of (B$'/y) obtained from the finite element calculation

and the values of (In/yy F yy) obtained from Hutchinson's results. The values of

I n yy:yy
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a (O,n) and ' (0,n) are obtained by the linear interpolation between

yy (0,3) = 1.1 and Oyy (0,13) = 1.2; and 2yy (0.3) = 0.7 and ^yy (0.13) = 0.8;

the values of In (n) are from the linear interpolation between In (3) = 3.86 and

in (5) = 3.41. The values of the finite element calculations and those obtained

from Hutchinson's results are very close.

The results for 0yy, Eyy, &, and P along the radial lines of 450 , 600, and

900 and away from the crack line are shown in Fig. 7 as solid curves. a is

effective stress; EP is effective plastic strain. Similar relations can also be

obtained for these stresses and strains.

The state of the crack tip stress and strain fields in SSY serves as a

reference to be compared with the crack tip fields of specimens in LSY and GY.

Double-edge-notched (DEN) and single-edge-notched (SEN) specimens were

studied. The calculated ayy, Eyy, a, and aP are shown in Figs. 7 and 8. For

comparison, the results of the SSY calculations (solid curves) are also shown.

The values of rp for the specimens in LSY and GY are obtained by the linear

extrapolation of effective stress, a, to yield stress cy in a logarithmic plot

of a vs r. The solid lines of the SSY coincide with the data of GY. The same

scaling factor rp is applicable to all stress and strain components. Therefore,

these stresses and strains can be expressed in terms of a single parameter, rp.

Since rp is related to K or J in SSY, these stresses and strains can also be

written in terms of K or J. In other words, these stresses and strains in LSY

and GY are characterized by K or J.

The fact that the data of SSY and GY fall onto the same line means that a

crack tip field in GY does correspond uniquely to a crack tip field in SSY. Con-

sequently, one will be able to use a small sample in GY to reach the crack tip

field of a large sample in SSY at the equivalent K-value. The fracture process
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is controlled by the crack tip stresses and strains within the stiffened zone,

and the crack tip stiffened zone is imbedded within the plane stress zone. Thus,

the stresses and strains within the stiffened zone will be the same if the intensity

of the surrounding plane stress crack tip field is the same. Or, to state the con-

clusion more simply, the K or J of the plane stress crack tip field characterizes

the stresses and strains within the stiffened zone, even though the stresses and

strains within the stiffened zone are unknown. Therefore, if a small sample in

GY fractures at a K-value so defined, a very large sample, made of the same

material in SSY, will fracture at the same K-value, because the crack tip stresses

and strains are identical in both samples. Since crack tip stresses and strains

in the stiffened zone is affected by plate thickness, this conclusion is valied

only for specimens of the same thickness.

The near tip stresses and strains correlate with K or J. In order to use the

correlation for convenient fracture toughness measurements, the near tip field must

be related to the applied stress a. and the imposed elongation A. Fig. 9 shows

the correlation of the product ayy :yy at a certain distance r ahead of a crack

tip with the product a A for the DEN sample. The product ayy £yy is linearly pro-

portional to J. Therefore, we have

K2
j = 13.4 a A (batch C aluminum)

(11)
K2

J = 13.7 a A (batch B aluminum)

These relations can be used to measure the fracture toughnesses of the DEN speci-

mens made of these two materials.

In a cracked elastic solid, an area exists near the crack tip bounded by

re, within which the singular terms of the characteristic crack tip stress and

strain fields are valid approximations. For metallic specimens it can be shown

E b b, .. ... .. .. .. l.Zl I_ I -m m . ... ..
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that if size of re >> rp, K will characterize crack tip stresses and strains

even wi The very existence.of this conclusion serves as the basis

for thi ..,jirical determination of the minimum specimen size for valid fracture

toughli measurements. The condition of re >> rp is known as the condition of

small , yielding. Wilson has found that the size of re is quite small
[13]

when v), ....ed with other specimen dimensions. However, re is linearly proportional

to sp- ,..n size; so, in principle the condition of SSY can always be satisfied

by u-, large enough sample.

:, ndition of re >> rp could be unduly restrictive in terms of specimen

size .-:irements. T!- -ondition of re >> r is a sufficient condition. The

neces! , condiic.; '-, ?e validity of the linear elastic fracture mechanics is

that . rntld be a;, characterize the crack tip stress or strain component at

the 1(- imn. tne Cfined fracture process.

- ure 10 hows the relation between the applied stress and the equivalent

K-va',:, of a double-edge-notched specimen, both in the linear elastic fracture

mechdrvL; region and in the non-linear region. The linear elas.ic solution is

capabl- .o characterize the crack tip field up to ojy Y= 0.6, which gives a

crack ;e plastic zone size rp(eO) = 0.25 inches in comparison with the crack

lengt. = : 0.8 inches. In this case, the condition of re >> rp is obviously

more v; trictive than necessary.

can be concluded that the plane stress crack tip field of a double-edge-

notch- or single-edge-notched specimen in GY correlates well with the crack tip

field SSY, and that the crack tip field of a small sample in GY can be ex-

pressc, -i terms of K or J. The correlation is substantiated by the experimental

strain .asurements and the measured load-elongation curve as well as by its

agree, with the analytical results of Hutchinson and Rice and Rosengren.

The che" teristic plane stress crack tip field is related to the product of the



applied stress and the imposed elongation. The relation can be used to measure

fracture toughnesses of small samples in GY. The size of the crack tip stiffened

zone is approximately equal to the plate thickness. In order to use the charac-

teristic plane stress field, the plastic zone perhaps should be more than twice

the plate thickness; i.e., 0.25 (K c/a )2 > 2t. For a tough material, with K =

352 MPav5 (320 ksivT'i), ay = 552 MPa (80 ksi), t could be up to two inches.

III. CRACK TIP OPENING DISPLACEMENT AS A FRACTURE CRITERION

When a very large crack tip plastic zone exists in a thin plate, a strip

necking zone takes place, as observed by Dugdale[6]. Plastic deformation is con-

centrated within the strip necking zone, and the plate thickness is greatly re-

duced within the strip. A strip necking zone is imbedded within a much larger

plastic zone, shown scehmatically in Fig. 11, and a strip necking zone is shown

clearly by the moire pattern in Fig. 12.

Schaeffer et. al[14] have measured crack opening displacements as well as

the relative "opening displacements" between the upper and the lower boundaries

of the strip necking zone. Their measurements agree very well with the calculated

values according to the Dugdale strip yielding model. The length of the strip

necking zone has to be several times the thickness of the plate in order to assure

a good agreement. The length of the strip necking zone, relative to plate thick-

ness, t, is given by the parameter q = (K/oy)2/t. For the specimens tested by

Schaeffer et al, n = 48. Furthermore, they have found that the opening displace-

ments within the strip necking zone equal the thickness contraction.

As K increases, and a crack grows slowly toward a point ahead of the crack

tip, the relative opening displacement at the point in the strip necking zone in-

creases while the thickness is reduced. Once the crack tip passes the point, the

plate thickness at the point stops changing. After a specimen is broken, the

thickness at a point along the fracture path is the same thickness, when the crack
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tip first reached the point. The thickness contraction, At, at the point equals

the crack tip opening displacement, CTOD, and CTOD is directly related to the

applied K. According to the Dugdale model
[15],

CTOD = K2/Ea (12)

for small scale yielding. Therefore the K-values during stable crack growth can

be obtained by plate thickness measurements along the fracture surface of a

broken specimen. Indeed, Liu and Kuo [16] have measured the fracture resistance

curve as well as Kc from thickness measurements in such a manner. The thickness

contraction fracture toughness measurements can be used economically for screening

tests.

When strip necking takes place, CTOD is the result of the stretch of the

materials within the strip necking zone. In this case, the crack tip opening dis-

placement is a "tangible" physical quantity, that can be measured directly.

Experimenal observations showed that crack tip necking began to form at 71

equal to about 18.17]  For specimens in which n is between 18 and 48, the strip

necking zone is not large enough to warrant the use of the thickness contraction

as a fracture toughness measurement.

Using the moire method [17'18 ], COD were measured in specimens made of 2024-0,

2024-T3, and 2024-T351 aluminum alloys with tensile yield strengths, 54, 310, and

2
383 MN/m , respectively. All specimens were 101.6 mm wide central crack panels

with a nominal crack length of 17.8 mm. The applied stresses were about one half

the yield strengths for all of the specimens. The density of the .oire grille is

528 lines/mm, and is capable of measuring COD of about 2.5 x 10 4 mm (10- 5 in),

rotaionl msmath tchnque[19]using the rotational mismatch technique g . Figure 13 shows the measured COD.

The dashed lines are calculated from the Dugdale model and the solid lines from

the elastic model. Figure 13a shows two specimens at the same K-value. Specimen

1 is much thinner than specimen 2. The thinner specimen (n = 1.75) agrees very
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well with the Dugdale model, and the thicker one (n = 1 .12) agrees with the elas-

tic model. Approaching the crack tip, the difference in COD is more than a factor

of two. It is not likely that the crack tip opening displacement of specimen 2

will be equal to that given by the Dugdale model. Similar data is shown in Fig.

13b. It can be concluded that when n is close to 18, the measured COD's agree

exceedingly well with the Dugdale model. When n is close to one or less, the

measured COD's agree well with the elastic calculations. When the COD measure-

ments agree with the Dugdale model, the measured COD can be used to infer a CTOD

according to the Dugdale model and the inferred CTOD relates to K by Eq. (12).

The inferred CTOD characterizes crack tip deformation and crack tip stresses.

Therefore it is a suitable choice as a fracture criterion. It should be emphasized

that no strip necking zone was observed in the thin specimens despite the fact that

the COD's in these specimens agreed well with the Dugdale model, which assumes a

strip yield zone.

The agreement in COD between the measurements and the Dugdale model was ob-

served for aluminum specimens in small scale yielding or prior to general yielding.

Figure 14 shows the COD measurements in a magnesium specimen by Kobayashi et al[2 0 ]

All curves are beyond general yielding. The points shown in the figure were

calculated in this investigation with the Dugdale model for curve Mg-l-lY, which

was at the incipience of general yielding. The measurements agree well with the

Dugdale model even in the general yielding condition. The agreement of the

measured and the calculated COD both in SSY and in GY supports the Dugdale model

for fracture toughness measurements. Figure 14 also shows that crack opening pro-

files are parallel once beyond general yielding. When the upper and the lower

crack surfaces move apart like two rigid surface, the area ahead of the crack tip

is stretched, and the added stretch gives more opening displacement at the crack
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tip. During the process of crack tip opening stretching, the crack profile

maintains its original shape, corresponding to that at the incipience of general

yielding. Let SCOD(r) be the difference of the crack opening displacement at r,

COD(r), and the crack tip opening displacement at the incipience of general yield-

ing. Once beyond general yielding, the 6COD(r) remains unchanged. The total

COD(r) beyond general yielding is the sum of 6COD(r) and CTOD, i.e.,

COD(r) = 6COD(r) + CTOD

or (13)

CTOD = COD(r) - 6COD(r)

6COD(r) can be calculated by the finite element method. CTOD can be obtained from

the measured COD(r) and the calculated 6COD(r). CTOD is related to K by Eq. (12).

Equation (13) is applicable to center cracked panels. For the compact ten-

sion specimens, an additional term should be added to account for the rigid body

rotation about a "plastic-hinge". The rotational effects remain to be investigated.

The finite element method, based on the Dugdale model, can be used to calcu-

late 6COD(r) for plates of arbitrary shape. Hayes and William [21 ] have used the

finite element method to calculate COD and CTOD for the central crack, double-

edge crack, single-edge crack, and circumferential crack specimens under various

load levels up to general yielding. Basically, Hayes and Williams's method

balances the stress intensity factors contributed from the remote applied stress

and the stresses in the strip yielding zone.

Equation (12) has been indiscriminantly used to relate CTOD to K without the

consideration of the thickness effect. The equation is applicable whP! n > 18.

For specimens of lower n-values, Eq. (12) needs to be modified by a parameter

which is thickness dependent.
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There exist several methods to measure CTOD, such as the load-line mouth

opening and plastic hinge method, the linear extrapolation of a crack opening pro-

file from an optical photograph, rubber infiltration, etc. None of these methods

can avoid some degree of arbitrariness, either in the relation between the far

field measurement and the near tip deformation behavior or in the relation between

the measured quantity and the inferred K-value. Perhaps some of the earlier dif-

ficulties in applying CTOD to fracture toughness measurements arise from such

arbitrariness. The method and the procedure outlined in this study will help

to avoid these difficulties.

IV. SUMMARY AND CONCLUSIONS

1. The stresses and strains in a cracked solid are in a complicated 3-dimensional

state. There are three 2-dimensional limiting cases: plane strain, plane stress,

and the Dugdale strip yielding case. The parameter n = (K/Y) 2/t determines which

one of these three limiting cases is predominant. The characteristic crack tip

fields of these three cases differ vastly.

2. Fracture process is controlled by the stresses and strains at the

crack tip. Because of the difference in the characteristics of the crack

tip field, there exist various regimes of fracture correlations between a small

laboratory sample in general yielding and a large engineering structure in small

scale yielding.

3. Crack tip strip necking has been observed, when q is 48. At n = 48, the

measured relative opening displacements between the upper and the lower boundaries

of the strip necking zone, including that at the crack tip, agree well with the

calculated values according to the Dugdale strip yielding model. Furthermore

the relative opening displacement in the strip necking zone is equal to the thick-

ness contraction. According to the Dugdale model,

K = (Eoy CTOD)
I/2 = (Ecy At) 1 /2

where At is thickness contraction.
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4. When n is 18, crack tip necking zone begins to form, and the measured crack

opening displacements agree extremely we.ll with the calculations based on the

Dugdale strip yielding model. Once general yielding is reached, the upper and

the lower crack surfaces move apart as two rigid surfaces. The difference be-

tween the crack opening displacement at a distance r, COD(r), and crack tip open-

ing displacement, CTOD, remains unchanged once beyond general yielding.

6COD(r) = COD(r) - CTOD

6COD(r) can be calculated by the finite element method. CTOD can be obtained

from the calculated 6COD(r) and the measured COD(r); and CTOD is related to K.

Thus for rl between 18 and 48, we have

K = (Eay CTOD)1
/2

= {Eay [COD(r) - 6COD(r)]} I/2

5. When rp is several times larger than the plate thickness but it is not large

enough to form the crack tip necking zone, a characteristic plane stress crack

tip field exists. For double-edge-notched and single-edge-notcheJ samples, there

is a unique correspondence between the crack tip field i, - rsall ;..le in gen-

eral yielding and the crack tip field in a very large sample in. small scale yield-

ing. Therefore the equivalent K-value of such a small sample can be established.

Furthermore, the near tip stresses and strains are related to the applied stress

and the imposed elongation. Therefore the fracture toughnesses of such small

samples can be measured conveniently for n between 10 and 18.

In summary, as shown in Fig. 15, when n is more than 48, thickness contrac-

tion can be used to measure K; when n is between 18 and 48, the COD can be used

to measure equivalent K; and when n is between 10 and 18, the correspondence be-

tween the crack tip fields in small scale yielding and in general yielding can be

used to measure the fracture toughness of a ductile and tough material. However,

the demarcations between the various regions are tentative. Additional studies

are needed to establish them firmly.
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FIGURE CAPTIONS

FIGURE 1. COMPARISON OF CALCULATED 6yy VERSUS EXPERIMENTAL MEASUREMENTS, DOUBLE-

EDGE-NOTCHED PLATE, 2024-0 ALUMINUM ALLOY. A = ELONGATION OF GAGE

LENGTH, GL. E = 6.9 x 1O4 MPa (lO4 ksi).

ay N W a GL

Batch MPa ksi mm Inches mm Inches mm Inches

A 47.6 6.9 0.31 104 4.1 19.4 0.764 168 6.625

B 69 10 0.22 208 8 40.6 1.6 356 14.0

C 50 7.26 0.315 102 4 20.3 0.8 178 7.0

FIGURE 2. THE MEASURED AND CALCULATED LOAD-ELONGATION CURVES

A = AREA, W = WIDTH.

FIGURE 3. SCHEMATIC PLOT OF STRESS AND STRAIN DISTRIBUTIONS AHEAD OF A CRACK

IN LOGARITHMIC SCALE.

FIGURE 4. SLIP LINE FIELDS FOR FULLY PLASTIC TENSION MODE . PLANE STRAIN.

FIGURE 5. ELEMENT LAYOUT FOR SMALL SCALE YIELDING CALCULATIONS.

FIGURE 6. NORMALIZED PLOTS OF CRACK LINE STRESSES AND STRAINS.

FIGURE 7. CORRELATIONS OF ryy, cyy, a, and P BETWEEN THE SMALL SCALE YIELDING

AND DOUBLE-EDGE-NOTCHED SPECIMEN LOADED INTO THE REGION OF GENERAL

YIELDING.

FIGURE 8. CORRELATIONS OF ayy, cyy, 3 AND EP BETWEEN THE SMALL SCALE YIELDING

AND SINGLE-EDGE-NOTCHED SPECIMEN LOADED INTO THE REGIuN OF GENERAL

YIELDING.



FIGURE 9. NEAR FIELD PARAMETER, ayycyy VERSUS FAR FIELD PARAMETER, uA

FIGURE 10. CALCULATED STRESS INTENSITY FACTOR AT VARIOUS LOADING LEVELS.

FIGURE 11. CHEMATIC DIAGRAM OF CRACK TIP NECKING.

FIGURE 12. MOIRE PATTERN OF A STEEL SPECIMEN: APPLIED STRESS 55 ksi; 0.2%

OFFSET YIELD STRESS 91 ksi: YOUNG'S MODULUS 32 x 106 psi; 0.012

INCHES THICK: 6 INCHES WIDE: SLOT LENGTH 1 INCH: PITCH OF MOIRE

GRILLE 1/13,400 INCHES.

FIGURE 13. THICKNESS EFFECTS ON COD. DASHED LINE - DUGDALE MODEL. SOLID LINE - ELASTIC Mo

FIGURE 14. COD IN MAGNESIUM [From A. S. Kobayashi et. al, Ref. 20].

FIGURE 15. THICKNESS EFFECTS ON THE CHOICE OF FRACTURE CRITERIA.



204-0B4XH A. AL.CEN SPECINEN 1-O. exci a AL.
1 N 

N 
:fvE

N-03SS1A TFIOIESS'O.125k
N-0.22

EV*M & S.1 We1
!* &2 3.91

QOl 0.1 1
r - oisTAt'cE FROM CRACK TIP 0%l~)

0.001
(a) '00.1

2M4-. BACH CAL.r-!JSTAC FROMA CRAO< TIP WN

& 204-0 &AKH C AL.

0.007~~~~ -000.315__ _ _ _

0.172 1 0

C -DSI'L R(TP(N. S4N R~AaxxTP(N
(c )l (d)4.90

A 04. 6. 0.3 10 . 940.6 6 .2

CEGH 50L.2 0.3159 102 4 20.3 (0. 4 7 .0



1.6

I/.2 - - KI/"TI EXPERIMENT

p 0.8-
ay A00 PLANE STRESS CALCUL.

0

04
0

0 2 4 6 8 K) 12 14 16
A

CYW

FIGURE 2. THE MEASURED AND CALCULATED LOAD-ELONGATION CURVES

A - AREA, W =WIDTH.

b A
!# EASI

FEBM
I II I

100(r)

FIGURE 3. SCHEMATIC PLOT OF STRESS AND STRAIN DISTRIBUTIONS AHEAD OF A CRACK

IN LOGARITHMIC SCALE.



PLANE STRAIN
EXTERNAL 2k

FIGURE 4. SLIP LINE FIELDS FOR FULLY PLASTIC TENSION MODE .PLANE STRAIN.

94ALL TAE Y&M CADJLAIM

FIGURE 5. ELEMENT LAYOUT FOR SMALL SCALE YIELDING CALCULATIONS.



,~~~ I T, , T T "; T , r T

004

0 e -.. .

- 'I

O, I

00I

F UR 6. OR E PSMALL SCALE SIESS ING

L. ____________

O237I Is

FIGURE 6. NORMALIZED PLOTS OF CRACK LINE STRESSES AND STRAINS.



pip

10 F TTY T- -- T-rr-M
6 L YELDW5, DEN

8=0 
10

ftlid UOW D&UN SWAN
YWOF4 00ftuft

at

to.

cy

8z450 9=450-- 10

0.1
10 p

6=600 19 6(CrP 10

CIA
10

8 900 to

I L

K FR OM 1 125 To 411

OLLOKSWW

10,2 10'1 100 10.2 10*1 too
V/rp

FIGURE 7a. CORRELATIONS OF BETWEEN THE SMALL SCALE YIELDING AND

DOUBLE-EDGE-NOTCHED SPECIMEN LOADED IN GENERAL YIELDING.



'~7SMALL SCALE YIE-L*I ALYCN..E

sod Lie VI WfAn ai

rack wzw .
10.1

89 45o *l 9 45P -

10LI

10- 0 ~o
60Pp log

FIGURE 7b. CORRELATIONS OF o y AND E £ BETWEEN THE SMALL SCALE YIELDING AND

DOUBLE-EDGE-NOTCHED SPECIMEN LOADED IN GENERAL YIELDING.



,Ivi, I .~'i r Tf I 1 I v T In
.) 
"  GFNI I (F L eING. SEN .wJ Fe

IC ) * S o l '. O e n o e s im o U m 

1 0

$41 aee e mo'o C l.o,m 0 5W

=0 " :0

10- , :10

9:450 0:450

1 :0 0:6 °  "

0o t0"  10o  eO, iO- 90o  0
r/,p ,/,p

FIGURE 8. CORRELATIONS OF y,~ eyy AND P BETWEEN THE SMALL SCALE YIELDING

AND SINGLE-EDGE-NOTCHED SPECIMEN LOADED INTO THE REGION OF GENERAL

YIELDING

41y
. .... . ,lll ...... ... Ii , . .... mm -.- md ml .. . ... . .. .:m



3 2024 -0.BAlt4C. Al
2024 -0. BATCH CAl DEN SPECIMEN
DEN SPECIIN

j-015

-G~sw

~005 J-0075
4

vW-005 
A , 1 C

6~"75

ee&IW-n 40

FIUR 9 NARFILDIVRU FAv FILDPAAETR,



2024-0. BaTCH C. AL.

ELASTIC1~SY ~ORCSMI

FIGURE 10. CALCULATED STRESS INTENSITY FACTOR AT VARIOUS LOADING LEVELS.



CRACK ELASTIC

FIGURE 11. SCHEMATIC DIAGRAM OF CRACK TIP NECKING.



.4

IrI

~c 9
04 -40

k CO

t -10

IA



rim)

6x1 
1036x10"4~ ~ IlIIII w.l

Al 2024-0

0..-A 77 =1.12

zA= 2xi ' - 1_ 4
-- 2xlO_

3 80 AAI 2024-T3

- --z;'Eo0 7= 8
- o Al12024-T351
0 71=0.45

0-4

r(N)

Spec. Material aY. K t 71 COD
No. MN/rn2 MN/m m m (Ka)2/t Model

I Al 2024-0 54 4.53 0.41 175 Dugdole
2 A 2024-0 54 4.53 625 1.12 E lastic
3 A12024-T3 310 28.2 0.38 18.8 Dugdole
4 AI2024-T351 386 1a.4 6.25 0.45 Elastic

FIGURE 13. THICKNESS EFFECTS ON COD.

Dashed line - Dugdale model.
Solid line - Elastic model.



LOAD CURVE NO. LOA.

VzIOSJN MG-1-9Y 63K91
MG-1- y r71I
MG-I-6Y 178
MG-I-4Y 177

.. 0MG- -2Y 175

DISTANCE MG-1- IY 165"A-4°
THICKNESS VI'" 20

1101-1-41Y/.-i-zv :10

-08 -06 -04 -0.2 0 02 04 06 a8

ACTUAL DISTANCE (inches)

FIGURE 14. COD IN MAGNESIUM (From A. S. Kobayashi et. al, Ref. 20].

(K/urT)2

t

0 10 20 30 40 50 60 70
I I I I I ] I

Dd Mo Duqdole Model-CTOD

I CODua Mesdeelt --nd Thickness Contracton-
Plane StraC s Measurements

Characterization "

Plane Stress Characterization

FIGURE 15. THICKNESS EFFECTS ON THE CHOICE OF FRACTURE CRITERIA.



APPENDIX II

CRACK TIP DEFORMATION AND FATIGUE CRACK GROWTH

H. W. Liu

Professor of Materials Science

Presented at the

ASME Symposium on "Mechanics of Fatigue"

Washington, D.C.

November 16, 1981

TO BE PUBLISHED

IN THE PROCEEDINGS

Department of Chemical Engineering and Materials Science
SYRACUSE UNIVERSITY

Syracuse, New York 13210



ABSTRACT

Fatigue crack growth is caused by crack tip cyclic plastic deformation.
Both the macro-analysis and the moire strain measurements indicate that crack
tip cyclic deformation is a function of AK, R-ratio, and plate thickness, t.
Therefore, dafdN must be dependent on these three parameters.

The cyclic crack tip unzipping shear decohesion process is described, and
the unzipping fatigue crack growth process is modelled by the finite element
method. The calculated crack growth rate agrees well with the experimental
measurements. The unzipping model is used to study the growth of micro-cracks
and the fatigue crack growth in a ferritic-martensitic two phase steel.

A model of fatigue crack growth threshold is proposed. The proposed model
agrees with the observed crack growth behavior in the near threshold region. A
quantitative analysis of fatigue limit and microstructure is made. The analysis
provides a quantitative approach to optimize the microstructure for high fatigue
strength.

INTRODUCTION

Plastic deformation in crystalline materials takes place in discrete paral-
lel planes separated by crystal layers which are practically "deformation free"
[1]. This deformation process may occur at a crack tip and cause a crack to grow
under cyclic loading.

The use of a single parameter AK to characterize crack tip cyclic plastic
deformation has been analyzed [2,3). Moire strain measurements [4] showed that
AK does characterize both the cyclic strain range and the total accunmulated
strain in the crack tip region. The capability of AK to characterize crack tip
deformation is the basis for the use of AK to correlate fatigue crack growth
rate. The analysis and the moire' strain measurements are reviewed briefly.

Alternating shear at two intersecting conjugate slip planes, crack tip
blunting, and shear decohesion have been proposed as the mechanisms for fatigue
crack growth [5,6,7,8). The unzipping model of fatigue crack growth based on
crack tip shear decohes ion process was modelled by the finite element method [9].



The calculated crack growth rate compares favorably with crack growth rate and
striation spacing measurements. The unzipping model was extended to study the
growth of micro-cracks and the fatigue crack growth in a ferritic-martensitic -2-

two phase steel [10,11].

When the applied AK is low enough, a crack stops propagating. A1th is the
AK for crack growth threshold. Based on the unzipping shear decohesion process,
a model for AKth is proposed. The proposed model agrees with the crack growth
behavior in the near threshold region.

A quantitative analysis on the fatigue limit of a two-phase ferritic-marten-
sitic steel is made. The fatigue limit of such steel could be controlled by the
crack non-nucleation or crack non-propagation in the ferrite or in the martensite
the fatigue limit could be controlled by the constraint of the hard martensite
on the crack tip deformation in the ferrite; it can also be controlled by the
cracking resistance of the martensite. The relation between the dominant con-
trolling process and the ferrite domain size is analyzed.

CRACK TIP DEFORMATION - AK CHARACTERIZATION [2,3]

During the last twenty years, linear elastic fracture mechanics has been
applied extensively to fatigue crack growth. Linear elastic fracture mechanics
is based on the characteristic crack tip stress field in a linear elastic solid.
The elastic stresses, strains, and displacements for a Mode I crack are

K I
a ij - a''r ij

EiJ 2 8ij (eV) (1)

KI

i = 2pI A(i(1)V)

where r, 0 are polar coordinates; and a , Ei u u prescribe the distributions
of the corresponding oij, eij, and ui copionents. KI is the stress intensity
factor while V is Poisson's ratio.

These relations are valid only in a region very close to a crack tip, and

we call this region the characteristic elastic crack field zone, re. Outside
this region, the approximations of these relations deteriorate rapidly. Within

re, the stresses increase rapidly as r approaches the tip. The high stresses

cause plastic deformation within a small region close to the tip in a metallic
specimen. The plastic region is defined by r (0).

Figure 1 shows two samples that have different geometry and forms of load-
ing. However, these two samples are loaded to the same K-value. Without plas-
tic deformation, the elastic stresses within re's of these two samples are the
same. With plastic deformation, if r << re, the stresses on the outer bound-
aries of re's are not perturbed much gy the stress relaxation within rp'S, and
the stresses on the boundaries of these two re's are essentially given by the
elastic solution.

Figure 2 shows the two regions of re's as free bodies of the same shape and
size. If the condition of r << re is satisfied, their boundary stresses must

be the same since K1 - K2. herefore, the stresses and strains at the same point
P(r,e) in these two free bodies also must be the same. Furthermore, if the same
cyclic loading (in terms of K), are applied to these two samples, the fluctua-
tions of the boundary stresses on these two free bodies are the same, and the

cyclic stresses and strains at the same point P(r,8) within these two regions of
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Fig. 1. Two different specimen geometry, two different
forms of loading, but K, = K2 .

1 2

KIx K2

Fig. 2. Two free bodies of same shape and size. With
same boundary stresses.

re must be the same even within rp. If the same fluctuation of K is applied to
these two samples (provide the ratio rp/a is not excessively large), the cyclic
stresses and strains experienced by these two material points at P(r,6) are the
same, even if the crack tip advances. In conclusion, the fluctuation of K char-
acterizes the cyclic stresses and strains in the near tip region of a propagat-
ing crack, even within r This characterization is invariant to the planar geo-
metry of a specimen if t~e condition of small scale yielding, SSY (i.e. rp << re)
is satisfied.

When a crack propagates under a constant AK (or under a slowly changing AK)
at a given R-ratio, the value of AK alone will be able to characterize the cyclic
stresses and strains in the near tip region. If the cyclic stresses and strains
experienced by the materials control the crack growth rate, then one must con-
clude that



da/dN = f(AK) (2)

The stresses and strains are also affected by specimen thickness, t, and R-ratio.
The functional relationship between da/dN and AK is affected by environment, cy-
clic frequency, V, and testing temperature, T. Consequently, for a given mater-
ial, one may write

da/dN -f(AK,R,t,v,T, environment) (3)

This relation is true if r << re . re is linearly proportional to speci-
men size. Therefore, Equation b3) can always be made true, in principle, by
using large enough samples. The SSY condition is the sufficient rather than the
necessary condition. The necessary condition for Equation (3) is that a sample
is large enough so that K characterizes the specific stress or strain component
controlling the crack growth process.

The capability of AK to characterize cyclic strains in the near tip region
was investigated by the moire method and the results are given in the next
section.

CYCLIC DEFORMATION IN CRACK TIP REGION [4]

The above analysis shows that under a constant AK (or slowly changing AK)
fatigue loading, crack tip stresses and strains are characterized by AK. Be-
sides AK, the stresses and strains are also affected by specimen thickness and
R-ratio. Within the plastic zone in a thick specimen in the state of plane
strain, the ratio between the maximum tensile stress and flow stress, (a mahafl)

is approximately 2.45 under a static loading; and the ratio is nearly 1 for the
state of plane stress. The strains in these two different states must vary
accordingly.

The cyclic deformations in the crack tip regions at various K-levels were
measured with the moir technique [4). measurements were made on 2024-T351
aluminum center cracked plate specimens with a thickness of 6.4 mm and 1.28 -m
(0.25" and 0.05") and R-ratios of 1/3 and 1/10. The static and cyclic yield
strengths were 360 and 460 MPa (52 and 67 ksi) respectively, and the cyclic
strain hardening exponent was 0.13.

As a fatigue crack propagates toward a material point far ahead of the tip,
the cyclic strain at the point is, at first, elastic. As the tip gets closer to
the point, the material at the point experiences plastic deformation during the
loading half cycle, but the deformation is still elastic during the unloading
half cycle. The plastic strain accumulates monotonically cycle after cycle as
the tip propagates toward the point. As the crack tip moves even closer, plas-
tic deformation takes place during the unloading as well as the loading half
cycles, and the plastic deformation becomes cyclic. In a fatigue loading, there
are monotonic plastic zone rpCs) and cyclic plastic zone, r (c)* The cyclic

plastic zone is embedded within the monotonic plastic zone. Both the accumulated
total strain, C ,ax and the cyclic strain range, Ac, along the crack line were

measured. From these strain measurements, the monotonic and cyclic plastic
zones were determined [4).

The moirg patterns were obtained by the double exposure method. The speci-
men surface was coated with a photo-resist coating. The coating was first ex-
posed to a high density moire' grille of 13,000 lpi, before the pre-cracked sample
was loaded. The grille lines were parallel to the crack line to measure the dis-
placement u . The second exposure was made at K when the crack increment was

y max
long enough so that a "steady state" of cyclic plastic deformation at the crack
tip region was realized. The moir fringe pattern thus formed gave the total
accumulated strain, ema . After the picture of the fringe pattern was taken, the

pattern was immediately removed, and a new photo-res'lst coating was applied to



measure cyclic strain range, Ae. Two exposures were made in succession, one
each at Ks/n and K max . The fringe pattern gave Ac.

The data of cmax and Ac for the 1/4" thick specimens atR=l/10 are given in

Figures 3 and 4. Additional data are given in Reference [4]. The data at a
given AK- or K -level in a logarithmic plot can be correlated very well by a

max
straight line. For the Emax data, the slopes of the lines decrease from -0.5 at

low K levels to -0.8 at high K levels.
max max

Unfortunately, all the Ac measurements were made outside the cyclic plastic
zone. The moire pattern lost its definition when r < 0.03". However, all of
the Ac measurements were made within the monotonic plastic zone. The lines in
the log Ac vs log r plot have a slope of -1/2, which agrees with the elastic
calculation. If both a and a are taken into account,

xDC yy

c - (1 - v)a yy/E. a yy(r,0) - K/2-r . The measured Acyy can be written as

Ac=Oc 8 lv K(4)
ACyy(measured) yy(theoretical) (E )2K

The values of a are close to 1, and they are tabulated in Table I. The maximum
deviation from the theoretical values is 35%. For a given combination of t and
R, 0 is a constant.

TABLE I

Ac asured

t R = Atheoreticail

1.27 mm (0.05") 1/10 1.06

1.27 mm (0.05") 1/3 1.18

6.35 mm (0.25") 1/10 1.25

6.35 mm (0.25") 1/3 1.35

The measured AE in the thin specimens is less than that in the thick speci-
and is caused by crack closure in the thin specimens as will be explained later.
Ac is higher at a higher R-ratio. The higher Ac is likely caused by cyclic
creep, which is caused by the positive mean stress within rp(C).

The cyclic plastic zone size r can be obtained by extrapolating the
measured Ac line to a value of 9.3 Rti6-, which corresponds to 2 -
938 MPa (134 ksi) with the Mises yield criterion. The monotonic plasiic zone
can be determined in a like manner. The results are shown in Figures 5 and 6.
The dashed lines in these two figures are the calculated lines based on Irwin's
plastic zone size formula. The larger measured plastic zone sizes in comparison
with the calculated ones reflect the high measured strains.

Recognizing 2aY(C) - yield stress range, at the initiation of the cyclic

plastic deformation, we have,

ACy=() - 2ay(C) - 8(1_v) "K (5)
p (C)
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Since all the AC lines are parallel and have the same slope of -1/2, the
plot of all of the data of Ae vs r/rP(C) fall on a single line. This is shown

in Figure 7 for the 6.35 mm thick specimen at R = 1/10.
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Fig. 7. Strain versus r/rp(C) for 6.35 mm thick specimens

at R - 1/10. Ref. [4b]

Similarly, the emax data are plotted against r/rp(c) in the same figure.

The sax data lie within a narrow band. The empirical relation

r m
£ - -*-) (7)
max r

correlates well with the data. E can also be written as
max

S=  2 (0 -) (8)
2a (C) 2Ey(C)r

which is similar to that given by Hutchinsen [12), Rice and Rosengren [13). For
t - 6.35 mm and R - 1/10, the data in Figure 7 give m - 0.8 and a - 0.0045. Ad-

ditional data are shown in Figures 8, 9, and 10 for the other combination of t and
R. % is the highest for the thin specimens at the high R-rato of 1/3, and the

lowest for the thick specimens at the low R-ratio of 1/10. The other two sets
of data are in between. The Moire method measures the deformation on the surface

of a specimen. The plastic deformation on the surface of a thick speci-In is

constrained by the interior of the specimen, where the deformation is in the
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state of plane strain. On the surface of a thin specimen, the constraint is ab-

sent, and it is "free" to deform. Therefore cmax's in thin specimens are higher -11-

than those in thick specimens. The high measured cma is also reflected in the

large r p(s) in Figure 6.

Both cyclic creep and crack closure will affect the strains. At high R-
ratio, the mean stress in the plastic zone is positive; the positive mean stress

causes cyclic creep. Cyclic creep increases both Ac and E at the higher R-
ratio of 1/3 as shown in Table I and Figures 8, 9, and 10 af 11.

The increase in cmax is more pronounced in the thin specimens because of

the lack of the constraint by the interior plane strain zone. The material with-
in the plastic zone in thin specimens is stretched considerably more than that

in the thick specimens. During the unloading, the highly stretched zone will
cause crack closure and will reduce the effective AK. Therefore, Ac in a thin
specimen is less than that in a thick specimen as shown in Table I.

Figure 7 shows that all the Ac data fall on a single line, therefore, AC
can be expressed in terms of rp(C), which is in turn related to AK. Hence, Ac

can be directly related to AK. The emax data fall within a narrow band (± 5%).
Therefore, cmax can also be expressed in terms of rp(C) and AK. At a given

thickness and at a given R-ratio, AK can characterize both Ac and cmax

The emax scatter bands for the other combinations of t and R are wider

(± 15%) as shown in Figures 8, 9, and 10. If the lines for the three high Ka-
values are eliminated from Figures 8 and 9, the scatter band is reduced con-
siderably. The possible causes for data scatter include the thumb nail configu-
ration of the internal crack front, and the shift of the crack to the shear plane
at the high Kmax levels. The shift reduced plane strain constraint and caused

an increase in plastic strain.

The fatigue crack growth data in Figure 11 show that the crack growth rate

increases in the same order as the increase in Ac, that is in the order of R =
1/10, t f 1.27 mm; R = 1/3, t = 1.25 mm; R = 1/10, t = 6.35 mm; and R = 1/3, t f
6.35 mm.

In conclusion: AK characterizes both Ac and cmax in a crack tip region and

the cyclic strains are affected by both specimen thickness and R-ratio. Since
fatigue crack growth is closely related to plastic deformation, therefore da/dN

must be related to AK, t, and R.

THE UNZIPPING MODEL OF FATIGUE CRACK GROWTH

Orowan [5) has proposed the alternating shear rupture on two sets of inter-
secting slip planes as the ductile fracture mechanism. Subsequently, crack tip
blunting by shear decohesion has been proposed as the mechanism for fatigue stri-

ation formation and fatigue crack growth [6,7,8]. Neumann [8) has directly ob-

served alternating shear rupture, which causes crack tip opening and crack
growth in copper single crystals under cyclic loading.

Plastic deformation in single crystals is not continuous as has been assumed
in continuum mechanics. Rather, it concentrates in discrete parallel slip bands
separated by crystal layers, which are essentially elastic as shown in Figure 12.
The same deformation processes may also occur at the crack tip in a crystalline
solid. The slip bands in a single crystal coincide with the slip planes of the
crystal. The deformation in the slip band of a polycrystal are the result of a
number of active slip systems of each crystal in a band, and the slip bands co-
incide with the plane of maximum shear stresses. Figure 13 shows two sets of
parallel intersecting slip bands at a crack tip. As the applied stress increases,
shear decohesion takes place alternately on slip bands 1, 2, 3, and 4, in

A4
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Fig. 12. Development of laminar slip bands with increasing defor-
mation, (a) and (b), and laminae at high deformation (c),
Ref. C1].

Crock 1i

o b c d e
Fig. 13. The unzipping model for crack opening and advance.

succession. The elastic slabs between the neighboring slip bands move away from
the crack tip, one at a timre, like the teeth of a zipper during the unzipping
process. As the slabs mo've, the crack tip opens up, and the crack moves forward.

Kuo and Liu [9J have modelled the crack tip unzipping process using the
finite element method. A cracked circular solid is loaded with boundary dis-|
placement exitation as shown in Figure 14a. The solid is loaded incrementally

3!

to a predetermined K-level. The stresses and strains are calculated, and the
plastic zone, r ,his delineated. At the K-level, a slip band such as AB is
chosen, Figure 4b. Each of the nodal points along AR is branched into two. A

small load increment, 6K is then applied. During the increment, the branched
nodal points are allowed to slide freely along Ai, but they are not allowed to
move away from hi. In the meantime, plastic deformation is allowed to occur to
all the elements during 6K. The crack increment caused by the unzipping process,
6 z during the increment 6K is calculated.

According to the dimensional analysis and the results of the past studies,
the unzipping crack increment must be

2K2

where C is an unknown proportional constant; V is the Poisson's ratio; E is the
Young's modulus;and Oyis the yield stress. Differentiating both sides, one

obtains

i ~~~ 5..... .. . .. ... ..- A- 4 1
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Fig. 14a. Finite element configu- Fig. 14b. Plastic zone and decohesion
ration, 8 f 450 .  plane.

MAa C(l- 2 )26K (10)6Auz Eay (0

The values of K, 6K, and 6Aa from the finite element calculation enable us to
evaluate C. Thus we have uz

K2

Aa 0.04 (1-'V
2 ) KL = 0.04J (11)

uz Eoy ay

where J = 2I - 2K/E. Yang [14] repeated the calculations for a cracked cir-
cular solid and, in addition, has made a calculation for a compact tension speci-

men. His results are essentially the same

Under a fatigue load, as the applied load increases from Ki, the stresses

at any point within the cyclic plastic zone, rP(C) increase. The plastic defor-

mation at the point takes place when the effective stress increases by the
amount of 2cY , instead of ay as in the static case. Therefore, one can justi-
fiably use Eq a ion (11) to calculate fatigue crack growth rate with the substi-
tutions of da/dN, AK, and 2 a for Aa , K, and ay respectively. After these
substitutions, one obtains (C) uzY

da 2 AK2  A2 AK2

TN 0.02 (1-v2) -- = 0.02 - - 0.018 Ea (12)dNEIy (C) Oy(C) Ey (C)

Bates and Clark [15) related fatigue striation spacing with AK for a number
of materials. Taking striation spacing as da/dN, we have

da 6 AK) 2

dN- 6(,-- (13)

From the available literature, Hahn et al. [16) have correlated da/dN with

AK for a number of steels. They found that

da 8(-) 2(14)

dN - E(4

Pook and Frost [17] have found a similar relation

da 9 (AK 2  (15)N 7t-E--(5



Barsom [18] tested the fatigue crack growth of a number of steels. He found -1.4-

da 0.66 x 10 - 8 AK2 25 (inches/cycle) (16)
dN

According to Bates and Clark, Hahn et al., and Pook and Frost, da/dN can be
written as

da = 2 (17)
dN E(F

With oY(C)/E = 1/400 and E = 207 x 106 MPa = 30 x 106 psi for steel, the empiri-

cal equations and the theoretical equation are plotted in Figure 15. The agree-

ment is very good.
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Fig. 15. Comparison of the empirical fatigue crack growth
rates in steels with that predicted by the un-
zipping model. Ref. [i)

The measured crack growth data of various steels do not seem to vary much.

It is known that the cyclic yield strengths of steels do not vary much because

the annealed soft steels usually cyclically harden, and hardened steels usually

cyclically soften. The value of the ratio a Y(C I/E does not vary much from one



steel to another. If their crack growth is controlled by the deformation pro-
case, their growth rates should not vary much either.

Kobayashi et al. [19) measured the striation spacings of a variety of
metals and alloys. The measured striation spacings are related to AJ/0flow as

shown in Figure 16. For a number of materials, aflow < 2 y(C) < 2 flow. Two
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Fig. 16. Comparison of striation spacin with that prediced
• by the unzipping model. Ref.120]

lines in Figure 16 are calculated according to Equation (12) with 2 a¥(C) -f low

for one line and y(c) = 'flow for the other. Again the agreement is very good.

More detailed discussions of the modelling and the comparison with the experi-

mental results are given by Kuo and Liu (9), Liu, Yang, and Kuo [3), and Liu and
Kobayashi (20].

In the unzipping model, the crack growth rate is much less than that given
by the Dugdale strip yielding model. As a crack tip is deformed and blunted
during a rising load, the crack tip opens up and the tip grows forward. However,
only part of the blunting crack opening displacement contributes to crack growth.

Figure 17a shows slip band A at a crack tip. As K increases, the shear de-
cohesion at A causes crack tip blunting and crack growth as shown in Figure 17b.
As the crack tip grows during a rising K, the slip band A is left behind. The
slip band A will continue to be active. Once behind the crack tip, the shear
decohesion at A will blunt the crack tip but will not contribute toward crack
growth as shown in Figure 17c.

Let 6K - 1 - 0); 6K2 - (K2 - K1); .... ; 6K n - (K n - K-_). Along the
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Fig. 17. Shear decohesion, crack tip bluiting, and crack
growth.

crack path, n slip bands will participate in the unzipping process. After 6Kp,
the crack tip reaches the slip band (P +1). During each of the 6Kn increments,
shear decohesions take place on all of those slip bands at or behind the crack
tip. All of these shear displacements will blunt the crack tip, but only the
opening displacement on the slip band at the crack tip contributes to crack
growth. Let 6CTOD be the crack tip opening displacement, which takes place onmp

slip band m during the increment 6K . 6CTOD are tabulated below.p mp

Slip Slip Slip
Band 1 Band 2 ......... .. Band n

6K1  6CTODII

6K2  6CTOD12 6CTOD22

6Kn  6CTOD 6CTOD ... 6CTOD
nln 2n' n

The crack growth is the sum of the diagonal terms. The crack blunting and
Dugdale CTOD include not only the off-diagonal terms but also the shear deforma-
tion along the crack flank which is behind the original crack tip at the be-
ginning of a loading cycle. Therefore, the crack growth rate calculated with
the Dugdale model is nearly ten times greater than the experimental values.

In the calculation, the slip step size, Usauz, is assumed to be very small.

The model is valid even if the slip step is equal to one atomic spacing.



A MODEL FOR CRACK GROWTH THRESHOLD, AKth -17-

Slip bands can easily be seen on the surface of a plastically deformed crys-
tal. Intense plastic deformation takes place on certain parallel s!ip planes,
while the layers of the crystal between these active slip planes remain practi-
cally undeformed, as illustrated in Figure ;2. In aluminum, the thickness of
the undeformed crystal layer, is about 200 A (1]. Let the minimum thickness of
the crystal layer be tm . When the unzipping crack increment Aa is less than

t, the applied load will reverse the slip direction before the crack front

reaches the intersecting conjugate slip plane a as shown by the dashed line,
position 2 in Figure 18b. Upon unloading, however, the crack tip

4 2 4

I \I

(0) (b) (c)

Fig. 18. Cyclic creep shear decohesion when Aa < t . Successive positions
uz m

of the upper crack surface during a stress cycle are indicated.

The additional shear decohesion between positions 2 and 4 is caused
by cyclic creep.

will not return to its original location. The mean shear stress on the slip
plane, (Tmax - T min)/2 lies in the direction to open the crack tip. During the

next loading cycle, the mean shear stress will cause "cyclic creep" slip,moving

the crack tip a little closer to the conjugate slip plane a, position 4 in

Figure 18b. Additional shear decohesion between positions 2 and 4 is caused by
cyclic creep. This cyclic creep slip motion will continue during the subsequent

loading cycles, until the crack front reaches the slip plane S. Then, the un-

zipping process will switch to the conjugate plane. A large number of cycles is

needed to propagate the crack by the amount of tm. Therefore, when crack growth
rate is less than tm, the growth rate decreases drastically with AK. This is

knows cononly. This crack growth rate transition takes place at da/dN 2 m and
at AK - AKt ,

Below the transition point, the size of the crack growth "step" remains con-

stant, equal to tm. But it takes a large number of cycles to propagate a crack
through tm . Hertzberg and Mills [21] have observed constant crack growth step

in aluminum, stainless steel, brass, and Ni-Cb eutectic composite. Constant
growth step size were observed over two decade range of crack growth rates.
Similar observations have been made by Gell and Leverant [22].

The sharp decrease in crack growth rate as AK decreases, often occur in the

neighborhood of 200 i/cycle, ( 10- 6 inches/cycle), a value close to the observed
for aluminum. The crack growth step size observed by Hertzberg and Mills is

likely to be 24m consisting of one step on one slip plane and another on the con-
jugate slip plane.

The transition point, AKt, is given by

AK2

S-0. 018 EO (1)
m y (C)



When cyclic creep takes place, the mean stress is relaxed. Whe the man
stress is relaxed, two effects will increase shear decohesion. First, as the
mean stress relaxes to zero, a Dart of the elastic strain at K is convert-

max
ed to plastic strain and shear decohesion. Second, when the stress relaxation
takes place, the flow stress at K is reduced. This reduction in flow stress

AmaX
will increase the plastic zone size and increase plastic deformation and shear
decohesion. A rigorous evaluation of the stress relaxation and cyclic creep
shear decohesion is difficult especially if the discrete deformation mechanism
is taken into consideration. However, the end results of these two effects can
be considered as the reduction of in the calculation of uz

IY(C)uz
When stress relaxation takes place, the flowstress at K decreases. Fig-max

ure 19 illustrates the stress relaxation at a point cycled within a fixed strain

Stabilized
-Hysteresis

Fig. 19. Relaxation of mean stress and stablized hysteresis
loop. Successive stress reversals are numbered.

range, Ac. The a decreases cycle by cycle until the mean stress is relaxed tomax
zero and a is nearly the half of the value at the beginning of the cycle load-max
ing. Figure 19 illustrates the stress relaxation where plastic deformation takes
place during both loading and unloading half cycles. In this case, the rate of
relaxation is rather fast. However, the stress relaxation within the cyclic
plastic zone is coupled to the slow relaxation within the monotonic plastic zone,
where relaxation takes place only when the stress deviates slightly from the elas-
tic deformation during the re-loading half cycle. The rate of unzipping cyclic
creep shear decohesion is directly related to the overall relaxation rate. When
the mean stress is relaxed to zero, the flow stress is reduced approximately by
half. Thus we have

auz -0.018 E(19)

When the cyclic creep shear decohesion is taken into consideration, if & is



still less than 4m, the crack tip will move back and forth between two neighbor- -19-
ing conjugate slip bands, and the crack will remain dormant. Therefore AK be-
comes AK th Combining Equations (18) and (19), we have

AKth =0.7 AKt (20)

AJth =0.5 AJt  (21)

Figure 20 shows the data of A533B steel [23). The values of AJt and AJth

are 18 in-lb/m 2 and 36 in-lb/m 2 , and the ratio AJ /AJth is 0.5 as given in Equa-
tion (20). 1o 1. T T or

0 0

° E!
|0

I0"S I

AJ OR (AN [ eE -LDz

Fig. 20. Fatigue crack growth rate of A533B steel versus AJ.
Data from Ref. [23]

The cyclic creep shear decohesion model for AK th takes the deformation pro-
cess into consideration. It is well known that AKh is environmentally sensi-
tive. The chemical effects must be superimposed nto the deformation mechan-
ism. The details reain to be studied. However, the relation K th ' 0.7 AK t
seem valid for a number of materials tested in detrimental chemical environ-
ments.

THE GROWTH OF FATIGUE MICRO-CRACKS

When a crack is very small, the applied stress is often high. It is often
close to or even higher than the yield stress of the material, in order to keep
AK above AK th . In this situation, the linear elastic fracture mechanics is no

longer applicable. Yang and Liu (101 have used the finite element method to
model the unzipping crack growth process in a single edge-cracked plate with a
applied stress up to the yield stress. The unzipping crack increment is given by

dAau
Asuz a o1 d K z dK( 2

At various K-levels, the quantity dAa uz /dK was calculated, and Asus was obtained

by numerical integration. The calculated crack growth rate is

II l l l ' . .. . . , l l . . i l i .. . .. I I 
I

. . . . . . . . . . . . . .0.



AK 2  -20-
da = (0.018 + 0.020 Au ) appa (23)
N 'Y(C) EOY(C)

where AG is the applied stress range and AK is the apparent AK value obtained
appa

from the linear elastic solutions. In the case of small scale yielding, the
ratio Ao/ay(C) approaches zero, and Equation (23) is reduced to Equation (12).

AKeff is the AK-value corresponding to Aauz in the small scale yielding case.

Combining Equations (12 and 23), we have

eAKf 2 AJ eff A_
=K = 1 + 1.11 -- (24)

appa appa aY(C)

In the intermediate crack growth rate region, Aa corresponds directly touz

da/dN. In the lower AK region near the threshold, da/dN is much less than Aauz,

because of the discrete nature of the crack growth process. However, in this re-
gion, we can use Aa as a physical parameter that characterizes the crack tip

uz

shear decohesion process as illustrated in Figure 15. This is analogous to the
use of elastic AK to characterize crack tip stress and strains even if plastic
deformation takes place.

When a nucleated micro-crack is at the threshold of crack growth, AKeff be-

comes AKth, and the applied stress amplitude (Aa/2) becomes the endurance limit,

ae . AKth is related to .uz(th) by Equation (12). Aauz(th) is used here as a

physical parameter that characterizes the shear decohesion process at a crack tip

for crack growth threshold. With AK = 1.1 Aav Ta for a single-edge-crackedappa

plate and "a" as the crack nucleus size, an, we have

Auz(th) = Y(C) 0 e e 2

a h YE (0.09 + 0.20 ) e ) (25)
n lY(C) Y(C)

Equation (25) relates endurance limit to crack nucleus size, an and Aauz(th)"

The crack nucleus size an is dictated by the nucleation process. For example, if
a fatigue crack is nucleated by an inclusion particle, an must be related to the
size of the particle.

FATIGUE CRACK GROWTH IN A FERRITIC-MARTENSITIC TWO PHASE STEEL

The fatigue crack growth behaviours of martensitic-ferritic steel have been
studied [24,25,26,27]. Fatigue cracks in such steels are often nucleated in the
soft ferrite region. If the applied stress is high enough, the nucleated cracks
will propagate across the martensite to the final failure.

Yang and Liu [11] analyzed the unzipping crack growth process by using the
finite element method. The two phase structure is simulated by a thin layer
of ferrite over a martensite core as shown in Figure 21. The quantity, dAa uz/dK

is calculated at various K-levels, and the crack growth rate is obtained by nu-
merical integration. The results of the calculation are shown in Figure (22)
for three stress ranges: Aa - 690, 550, and 410 MPa (100, 80, and 60 ksi). The
unzipping crack increment, Aauz can be considered as the crack growth rate. It

can also be used as a physical parameter to characterize crack tip shear deco-
hesion process.
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Fig. 21. Finite element mesh represents a two-phase
martensitic-ferritic steel.
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Fig. 22. Unzipping increment obtained by FE24 simulation. [ill

At a given applied Ac-level, before the plastic zone touches the ferrite-
martensite interface boundary, Asu increases with crack length a. When the

plastic zone reaches the interface, the hard martensite constrains the plastic



deformation in the ferrite. Therefore, the rate of increase of Aauz decreases. -22-
A maxima is reached, and Aauz decreases as the crack tip approaches the inter-
face. This variation of the calculated Aauz agrees with the crack growth data
in Figure 23. The growth rate increases initially. However, the growth rate
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Fig. 23. Fatigue crack growth in a ferritic-martensitic steel.
Ref. [23]

decreases as the crack tip approaches the interface. If the applied stress is

low, and AKeff is below AKth, a crack may even be stopped within the ferrite re-

gion. AKth is directly related to Aa uz(th). Therefore, the threshold condition

can also be characterized by Aa uz(th. The qualitative agreement between the

calculation and the experiment is very good. An improved calculation, using the

actual material properties of the ferrite and the martensite, is needed for
quantitative comparisons.

A QUANTITATIVE ANALYSIS OF MICRO-STRUCTURE AND FATIGUE LIMIT

In order to have fatigue failure in a two phase steel, a crack has to be

nu, leated, and the applied stress has to exceed the threshold for the propaga-
tion of the nucleated micro-crack. The crack nucleus in the soft ferrite has to
overcome the constraint of the hard martensite; the crack has to penetrate the
ferrite-martensite interface. Once in the martensite, the crack has to overcome
the cracking resistance, AKth, of the martensite. The fatigue limit of the steel

can be controlled by any one of these processes.

If the crack nucleus sizes, the crack nucleation stresses the thresholds
for fatigue crack growth in ferrite and martensite and the cyclic yield strengths
of ferrite and martensite, and in addition the thickness of the ferrite layer
are known. The fatigue limit of a two phase steel can be evaluated quantita-
tively.

First, consider the ferrite alone without the complication of the marten-
site. Let the stress for crack nucleation be on . The value of on and an will

give us the value of AKeff . Equation (24). If A eff > AKth(ferrite ) the crack

will continue to grow until failure. Therefore, the fatigue limit a. is equal

to an, and ce is controlled by the crack nucleation process.



If AKeff at a is less than AKth(ferrite ) the nucleated crack will stay

dormant, until the applied stress is increased. Therefore, a > a and the fati-

gue limit is controlled by the crack propagation process.

The relation between crack nucleus size and fatigue limit is given by EIua-

tion (25). For the ferrite, we assume ay(c) = 380 MPa, y(c) /E = 5.8 x 10 -

and Aauz(th) = 28 x 10- 6 mm, which corresponds to AKth = 11 MPa'm. The calcu-

lated relation between an and Ce is plotted in Figure 24. oe changes from 200

to 300 MPa as a varies from 0.085 to 0.03 mm.
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Fig. 24. Crack nucleus size and fatigue limit.

The curve for the martensite is also plotted in the figure. For the mar-

tensite, we assume Aauz(th) = 23 x 10- 6 mm, which corresponds to AKth =

16.5 MPaim . aY(C) = 1035 MPa, and E = 207,000 MPa. The fatigue limit of the

martensite changes from 600 to 800 MPa as the crack nucleus size varies from

0.02 to 0.01 mm.

Once a crack grows into the martensite, if the applied AK is less than

AKth(martensite)' the crack will stop propagating. The fatigue limit is thus

controlled by the cracking resistance of the martensite. With the crack length
equal to the ferrite layer thickness, the fatigue limit can be calculated with

Equation (12 or 25). For a single edge-cracked plate, and for AKth(martensite).

16.5 MPa A, the fatigue limit of the two phase steel is plotted in Figure 25.

The fatigue limits controlled by crack non-propagation in both martensite

and ferrite are also plotted in the figure. For the ferrite, e = 300 MPa and

an - 0.03 mm; and for the martensite, oe n 800 MPa and an - 0.0 mm.

When a crack tip grows close to the ferrite-martensite interface, the un-

zipping crack increment, Aauz decreases as shown in Figure 22. When the shear

m, . . ., I r . ... i in. ... . i l . . ... . . . . . .. ..
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Fig. 25. Fatigue limit and ferrite domain size.

decohesion increment decreases below Aa for crack growth threshold, theuz (th)

crack stops in the ferrite region as shown by the three specimens at the lower

stress levels in Figure 23.

The unzipping crack increment calculation as shown in Figure 22 could be

used to construct the relation between the fatigue limit of the steel and the

ferrite domain size, when martensite constraining is the controlling process.
However, a much finer finite element mesh is needed to establish the quantita-
tive relation. The line in Figure 25 is a schematic line.

Figure 25 gives an overall view of the fatigue limit of the steel. The

effects of crack nucleus size in the ferrite and the martensite, the crack
growth thresholds of the ferrite and the martensite, the stress necessary for

crack nucleation, and the ferrite domain size are all intimately related to the

fatigue limit. Such an analysis will help to optimize the micro-structures in

order to achieve the best fatigue strength.

This analysis illustrates the need to study the effects of large scale
yielding, the discrete nature of plastic deformation, and the material inhomo-

geneity in order to establish the quantitative relation between fatigue
strength and micro-structure.

DISCUSSIONS

Fatigue crack growth rate are often correlated with AK. If the specimen is
large enough and the applied load is low enough so that the condition of small

scale yielding prevails, AK is capable of characterizing crack tip stresses and
cyclic plastic strains. In other words, a given value of AK corresponds unique-

ly to a state of crack tip stresses and strains. If fatigue crack growth is the

result of cyclic stresses and cyclic strains at the tip, da/dN must be related

uniquely to AK. When the condition of small scale yielding is not met, a given

value of AK may result in a number of different states of crack tip stresses and

strains. Therefore, AK is no longer able to correlate with da/dN. In the case



of large scale yielding, both Aa and AJ are applicable. 5

uz -5

AK and AJ are applicable as long as they can characterize crack tip stresseb

and strains. Both AK and AJ are used as indirect parameters, which do not infer
any crack growth mechanisms. Nor the growth mechanism need to be known in order
to make such correlations.

In the case of the ferritic-martensitic two phase steel, neither AK nor AJ

is capable to characterize the crack tip stresses or strains. Therefore, neither
AK nor AJ can be used to correlate crack growth rate. Aa is equal to da/dN;uz

therefore it is a direct parameter for crack growth correlation. A direct para-
meter, if known, is always preferred because it has a much wider range of appli-
cability.

Mechanical metallurgy studies the mechanical properties as affected by
microstructures. In the stress analysis, neither discrete plastic deformation

nor material inhomogeneity are taken into consideration. Fatigue crack growth

is the direct result of the discrete plastic deformation process. A quantita-

tive relation can be derived directly only if the discrete deformation process

is taken into consideration.

It is suggested to develop a new field of study of metallurgical mechanics,

which takes inhomogeneity, anisotropy, and the discrete deformation process in-

to account in the stress analysis. Then, use the calculated local stresses and

strains to correlate with microstructures. This paper illustrates such studies

on the effects of discrete slip process and the effects of material inhomogeniety

on crack growth. The recent developments in mechanics and metallurgical studies

set the stage for fruitful efforts and rapid progress in this area.

CONCLUSIONS

1. Cyclic plastic deformation at a crack tip may cause a fatigue crack to grow.

In the case of small scale yielding, AK is able to characterize the cyclic plas-

tic deformation at a crack tip, and AK can be used to correlate with da/dN suc-

cessfully.

2. The unzipping model of fatigue crack growth agrees with the measured crack

growth rate and striation spacing measurements.

3. The unzipping model is extended to micro-cracks and the ferritic-marten-

sitic two-phase steel.

4. AK and AJ are indirect parameters to correlate da/dN.

5. Neither AK nor AJ can be used to study the micro-structural effects on

da/dN. In this case, a direct parameter, such as Aa is needed.uz

6. A model of crack growth threshold is proposeS. The model predicts cor-
rectly the crack growth behavior in the near threshold region.

7. A quantitative analysis on microstructure and fatigue limit is illustrated.

Such quantitative analysis will help to optimize the micro-structures to achieve

high fatigue strength.
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